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INTRODUCTION

APartiallyaveragedNavierStokes (PANS) is a variable resolution turbulence
closure model
A Closure model for partially averaged statistics

A Bridging method for any scale resolution
A Single framework for DNS, LES, DES, RANS, etc.

A Attempts to model the effects of thenresolvedkinetic energy and dissipation
A Account for unresolved stresses with an eddy viscosity

ACan give results on par with LES at lower cost
A Higher aspectatios, much coarser grids away from boundaries
A Still need to be waltesolved to predict separation
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FORMULATION

ATwo-equation closure moded unresolved kinetic energk () and unresolved
specific dissipation. ()
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AUnresolved and total kinetic energy/dissipation related by the paramdiefs
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AParameters set by the user depending on the grid
ADNS af,,f =0, URANS §f =1
Af generally taken as 1/(f. = 1)
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IMPLEMENTATION

AAdding in turbulence transport equations to finisdlement methods not as
straightforward as finite volume methods
A Physical constraints
A Low numerical diffusion
A Boundary conditions

A Some alternative approaches have to be taken to ensure stability
A{2t0S F2NI £t2306.0 AyaaSIFIR 2F . (2 3dzr N} yiaSS
A Source/sink limiters fok

A Computational costs vary
A 2 extra transport equations to solve

A Potential time step restrictions due to eddy viscosity
A Anti-aliasing not necessary at high Reynolds numbers
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CYLINDER FLOW

AFlow around a cylinder at Re = 3900 was used :
benchmark

A Common case for benchmarking due to the complexi
the flow physics (laminar separation, frebear layer,
transition, turbulent wake)

ACompared to DNS\(itherdenet al.) and
experimental resultsRarnaudeatet al.)

A Coarse mesh with 64,00Q prisms (2.5m DOFs)

A Wallresolved with large aspect ratios and growth rates

AWith the same numerical setup, we compare PANS
to NavierStokes (URLES) simulations
A Variousf, parameter choices
A Adaptivef, methods

Top: LESRarnaudeatet al.). Bottom: DNSWitherden et al.)
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CYLINDER FLOW
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A URLES underpredicted the size of the recirculation bubble by roughly 50%

A PANS withi, = 0.1 showed excellent agreement with the DNS and experiment
A PANS withi, = 0.2 and 0.3 marginally overpredicted the size of the recirculation bubble
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CYLINDER FLOW
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AURLES showed significant deviations in the predicted streamwise and normal
velocity profiles

APANS withi, = 0.20.3 noticeably improved the predictions
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CYLINDER FLOW
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A Ltest_s. t\_/ariation In the secorader statistics between differerff values than firsbrder
statistics

A Optimal value betweefi, = 0.1 and 0.2
A Excellent agreement in the normal velocity variance profiles d @llues (not shown)
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ADAPTIVE PANS

Alnstead of tuning thd, constant, we want the solver to find the optimal value on
its own¢ Adaptive PANS

ANeed to quantify how much of the turbulent kinetic energy is resolved locally
A Physical length scales vs. resolved length scales

A Girimaji& AbdolHamid (2005) proposed using the turbulence variables to
calculate the unresolved length scales

Vku

- Brwy

Af, calculated as the ratio of unresolved length scales to the grid scalgg#®.1)

AN 3
fk=min{CPANs(l—) ,1]

A Spatietemporal variation irf, allowed as long as the turbulent scales are smaller

L
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ADAPTIVE PANS

AlInformation in higherorder methods can be leveraged .
to better predict the optimaf,
A Structured representation of the solution within elements
A Modal basis functions

ATransforming the solution within an element to a moda - \/ -
basis gives the fluctuation of the solution within the L~
element

Alntegrating the norzero modes of the velocity
magnitude gives an estimate of the resolved turbulent
Kinetic energy

Legendre modal basis

Ptot
b= [ @+ 0 + 0703
=1

ACalculate, using a numerical Kolmogorov scale withth == & =& == = =
estimate of the kinetic energy
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ADAPTIVE PANS

AModal method more accurately predicts the Idun
the laminar separation region

A Similarf, predictions by both methods toward tHarfield

Af, was set constant within an element for both
methods

A Several methods for utilizing the adaptifefields
A Onthe-fly PANS with adaptivig
A Timeaveraged, with precursor run
A Timeaveraged, with frozen field

APANS simulations with tirsaveraged, fields were
more stable

Instantaneousf, field at t = 100t Girimaji method (top)
and modal method (bottom)



